A REVIEW ON EXISTING INDIAN PAVEMENT MAINTAINANCE MANAGEMENT SYSTEMS

K C Sethi
M. Tech Research Scholar, Transportation Engineering department, CSIR-CRRI, New Delhi

Devesh Tiwari
Senior Principal Scientist, Pavement Evaluation Division, CSIR-CRRI, New Delhi

Neha Dhiman
Technician, Pavement Evaluation Division, CSIR-CRRI, New Delhi

A K Sagar
Principal Scientist, Pavement Evaluation Division, CSIR-CRRI, New Delhi

ABSTRACT
In India, the large network of existing roads, which are built at huge expanses, have started showing signs of distress failure before time due to combined effect of inadequate maintenance and structural inadequacies to meet the requirements of increase in traffic intensity and loading. The gap between the minimum requirements and actual allocation of funds for maintenance over the years has resulted in poor quality of road maintenance. India’s many cities like throughout Palestine are facing a monumental challenge in dealing with aging infrastructure. For pavements in particular, it is found that many streets were built 20 or 30 years ago and they are near the end of their economic life. Other streets have been deteriorated because of misuse, overuse and mismanagement. In addition, present and future threats affect the hoped mission of these pavements for rapid, safe and comfort movements of people and goods. Moreover, the current management reveals that the system used is not flexible enough to reflect the changing conditions and poor to assist in making decisions. This study aims to initiate a Pavement Maintenance Management System (PMMS) in which it provides a systematic process of maintaining, upgrading and operating the city pavements and tools to facilitate a more flexible approach that can enable to perform tasks better.

KEYWORDS: Distress Failure, Structural inadequacies, traffic intensity, loading, Mismanagement, comfort movements, road maintenance

1.0 INTRODUCTION
There is no doubt that the quality and efficiency of roads affect the quality of life, the health of the social system and the continuity of economic and business activity. Deterioration and catastrophic failure of these roads may occur because of aging, overuse, misuse and/or mismanagement. Therefore, their maintenance and preservation should have a great national interest. Pavement Maintenance Management System (PMMS) is a scientific tool for managing the pavements so as to make the best possible use of resources available or to maximize the benefit for society. Thus, PMMS can be used in directing and controlling maintenance resources for optimum benefits: A Maintenance Management System of a city is composed of a group...
of interrelated management tools designed that provide a basis for planning, scheduling, operating and controlling the highway maintenance effort with economy and effectiveness. The use of this system places continuity emphasis on the economic utilization of personnel, equipment and materials, with the available resources. The maintenance activities need to be considered in a more flexible and integrated decision-making framework. The system should be capable of handling the various aspects in a systematic manner, in view of the changing conditions. There is a strong need to gradually introduce new technologies like Geographic Information System (GIS), Global Positioning System (GPS), work scheduling, reports and inventory management. These will enable the highway agencies to perform tasks better, more economically, effectively and of higher quality.

2.0 REVIEWS ON DIFFERENT CASE STUDIES: Pavement maintenance can be defined as the planned strategy of cost-effective treatments to an existing roadway pavement system that preserves the system, retards future deterioration and maintains or improves the functional conditions of the system without including the structural capacity (does not include reconstruction or other improvements). On the other hand, highway maintenance \(^{(10)}\) has more generality and is concerned with the task of preserving, repairing and restoring a system of roadways with its elements, to its designed or accepted configuration. System elements include carriageway surfaces, shoulders, roadsides, drainage facilities, bridges, tunnels, signs, markings and lighting fixtures.

Figure (1.0) shows a generic deterioration curve and illustrates how the overall condition of the pavement changes as it ages. When first built, the pavement is hopefully in very good condition. Typically, the condition slowly decreases in the first years of service from very good to good condition. As the pavement approaches the end of its service life, the rate of deterioration accelerates.

![General Pavement Deterioration Curve](image)

3.0 Maintenance Aim

In developing countries (as Palestine) large road networks that built at great expenses have been inadequately maintained and used more heavily than expected. From economy point of view, it is desirable that adequate maintenance operation be carried out before the existing roads get appreciably deteriorated. The approximate time to carry out maintenance is very crucial. A neglect of short term routine maintenance leads to a general deterioration, possibly to serious failure and certainly to major maintenance work. This may cost 10 times of timely preventive maintenance work.

Timely maintenance programs of roads serve four main purposes

1. Reduces the rate of deterioration and prolong life of roads.
2. Reduces vehicle operating cost by providing better riding quality.
3. Keeps roads more open continually for traffic.
4. When the pavement reaches the end of its design life, expensive reconstruction will be necessary.

Maintenance type versus pavement condition is shown in Figure (1.2).
Fig. (1.2): Maintenance Type versus Pavement Condition

4.0 DISCUSSION ON REVIEW:
The present study consists of existing Indian pavement management system for flexible pavement road network. The existing Indian pavement methodology involves six modules which are data collection, pavement condition evaluation, developing urban pavement maintenance management system (UPMMS) using Highway Development and Management (HDM-4) tool, Urban pavement drainage management system, Urban priority ranking model using Analytic Hierarchy Process (AHP) and Integrating UPMMS WITH Geographical Information System (GIS).

5.0 CONCLUSION:
The maintenance management decision systems developed for urban roads in this present existing road pavement maintenance system would be practicing engineers, highways engineers, and consultants in India as well as other developing countries having similar geographical and climatic conditions.

6.0 RECOMMENDATION:
The methodology presented in this study may be extended to include whole of the existing road network Indian flexible pavement. The fields engineers may be trained to sucessfully implement such pavement management systems.

7.0 REFERENCE: